trójkąty AEB i BDA są przystające
| 3 | 1 | |||
tgα= | = | |||
| 6 | 2 |
| sinα | 1 | ||
= | |||
| cosα | 2 |
| 1 | ||
sin2α = | ||
| 5 |
| √5 | ||
sinα = | ||
| 5 |
| 2√5 | ||
cosα= | ||
| 5 |
| √2 | 2√5 | √5 | √2 | ||||
* | − | * | = | ||||
| 2 | 5 | 5 | 2 |
| 2√10 | √10 | √10 | |||
− | = | ||||
| 10 | 10 | 10 |
| 10 | 9 | |||
cos2β = 1 − | = | |||
| 100 | 10 |
| 3 | 3√10 | |||
cosβ= | = | |||
| √10 | 10 |
| √10 | 3√10 | 2*3*10 | ||||
sinγ=sin(180−2β) = sin(2β) = 2sinβcosβ = 2* | * | = | = | |||
| 10 | 10 | 100 |
| 3 | ||
| 5 |
|AB|=6√2
|OC|=3√2
| 1 | ||
|OP|= | |OC| =√2 | |
| 3 |
| √2 | 1 | |||
tgα= | = | |||
| 3√2 | 3 |
| 1 | ||
α=β i tgα= | ||
| 3 |
A taki sposób:
długości boków ΔAPB ; |AP|=|BP|= 2√5 , |AB|= 6√2
| 3√2 | 3√10 | |||
sinβ= | = | ⇒ β=..... z tablic i 2β=... | ||
| 2√5 | 10 |
| 1 | ||
Tak Mila tgα= | ||
| 3 |