| x3 | ||
f(x) = | ||
| 2(x+1)2 |
| 2x22(x+1)2 − x34(x+1) | 4x3 + 4x2 | x3+x2 | ||||
f' = | = | = | ||||
| 4(x+1)4 | 4(x+1)4 | (x+1)4 |
| x3+x2 | x2 | |||
na potrzeby drugiej pochodnej można skrócić: f' = | = | |||
| (x+1)4 | (x+1)3 |
| 2x(x+1)3 − x23(x+1)2 | (2x(x+1) − 3x2)(x+1)2 | |||
f'' = | = | = | ||
| (x+1)6 | (x+1)6 |
| 2x2 + 2x − 3x2 | ||
= | = ... | |
| (x+1)4 |
| x3 | ||
... no to spróbuję : f(x)= | ⇒ z pochodnej ilorazu funkcji f,g : | |
| 2(x+1)2 |
| x3 | 3x2*2(x+1)2 − x3*4(x+1) | |||
f'(x)= ( | ) ' = | = | ||
| 2(x+1)2 | 4(x+1)4 |
| 2x2(x+1) [3(x+1)−2x] | x2(x+3) | |||
= | = | − szukanaf ', zaś | ||
| 4(x+1)4 | 2(x+1)3 |
| x2(x+3) | x3+3x2 | |||
f''(x)= ( | ) ' = ( | ) ' = | ||
| 2(x+1)3 | 2(x+1)3 |
| (3x2+6x)*2(x+1)3 − x2(x+3)*6(x+1)2 | ||
= | = | |
| 4(x+1)6 |
| 6x(x+2)(x+1)3 − 6x2(x+3)(x+1)2 | 6x(x+1)2[(x+2)(x+1) − x(x+3)] | |||
= | = | = | ||
| 4(x+1)6 | 4(x+1)6 |
| 3x(x2+3x+2 − x2−3x) | 6x | 3x | ||||
= | = | = | − szukanaf ''. | |||
| 2(x+1)4 | 2(x+1)4 | (x+1)4 |