znaleźć przedział zbieżności szeregu
karol wielki: Znaleźć przedział zbieżnośc szeregu ∑ (na górze oo , na dole n=1) w liczniku (x−1)n
w mianowniku 2n−1 *√n
23 sie 22:13
Godzio:
| | 1 | | 1 | |
λ = limn→∞n√1/(2n − 1√n = limn→∞ |
| = |
| |
| | 2n√1/2 * 2n√n | | 2 | |
Przedział zbieżności: (x
0 − R, x
0 + R) = (−1,3)
Dla x = −1
| (−2)n | | (−1)n | |
| = 2 * |
| − z odpowiedniego kryterium − zbieżny |
| 2n − 1 * √n | | √n | |
Dla x = 3
| 2n | | 2 | |
| = |
| − rozbieżny, myślę, że wiesz dlaczego |
| 2n − 1 * √n | | √n | |
Ostatecznie:
[−1,3)
24 sie 00:50