Zadania
AS: Kto chce,niech liczy
Zadanie 1
| | 40 | | 60 | |
Sprawdzić,że jeżeli cosα = |
| , cosβ = |
| , przy czym |
| | 41 | | 81 | |
α i β są kątami ostrymi to
Zadanie 2
Rozwiązać układ równań
x*sinα + y*sin2α = sin3α
x*sin3α + y*sin6α = sin9α
Zadanie 3
Rozwiązać równanie
| | 29 | |
sin10x + cos10x = |
| cos42x |
| | 16 | |
20 sie 10:25
Bogdan:
Witaj
AS. Myślę, że chochlik w wyrażeniu cosβ przerobił Ci mianownik ułamka
| | 60 | |
z 61 na 81, powinno być: cosβ = |
| |
| | 61 | |
Pozdrawiam
20 sie 11:17
AS: Oczywiście że tak − niech tylko dopadnę tego chochlika.
A przecież sprawdzałem, ale powoli wzrok już nie dopisuje.
Dziękuję za uwagę − serdeczne pozdrowienia.
20 sie 12:09
tom:
Podbijam. Nikt nie rozwiąże tych zadań?
20 sie 21:55
szklanka: ja spróbuje
20 sie 22:21
Eta:
1 sposób
| | 40 | | 9 | |
Zad.1/ cosα= |
| to sinα= |
| |
| | 41 | | 41 | |
| | 60 | | 11 | |
cosβ= |
| to sinβ= |
| |
| | 61 | | 61 | |
ze wzoru:
| | α−β | | 1 | | 1 | |
to: sin2 |
| = |
| *[1− cos(α−β)]= |
| *[1−cosα*cosβ−sinα*sinβ]= |
| | 2 | | 2 | | 2 | |
| | 1 | |
=.... podziałać na ułamkach i mamy wynik |
| |
| | 41*61 | |
20 sie 22:26
szklanka: no właśnie Eta chciałem to napisać no
20 sie 22:33
20 sie 22:37
Maslanek: | | 29 | |
sin10x+cos10x= |
| cos42x |
| | 16 | |
| | 29 | | 29 | | 29 | |
P = |
| cos42x = |
| (cos2x−sin2x)4 = |
| |
| | 16 | | 16 | | 16 | |
(cos
2x−sin
2x)
2*(cos
2x−sin
2x)
2
| | 29 | |
P = |
| (cos4x+sin4x−2sin2xcos2x)(cos4x+sin4x−2sin2xcos2x) |
| | 16 | |
[(sin
2x+cos
2x)
2−2sin
2xcos
2x−2sin
2xcos
2x)][(sin
2x+cos
2x)
2−2sin
2xc
os
2x−2sin
2xcos
2x)]
| | 29 | |
P = |
| [1−4sin2xcos2x]2 |
| | 16 | |
| | 29 | | 29 | |
P = |
| [1−sin22x]2 = |
| 1−2sin22x+sin42x |
| | 16 | | 16 | |
L= (sin
5x+cos
5x)
2−2sin
5xcos
5x = ...
Na razie ok? I czy to w ogóle coś daje?
20 sie 22:45
AS: Zadanie 3
Korzystamy z tożsamości
| | 1 − cos2x | | 1 + cos2x | |
sin2x = |
| , cos2x = |
| |
| | 2 | | 2 | |
Wtedy
| | 1 − cos2x | | 1 + cos2x | | 29 | |
( |
| )5 + ( |
| )5 = |
| cos42x |*32 |
| | 2 | | 2 | | 16 | |
(1 − cos2x)
5 + (1 + cos2x)
5= 58cos
42x
Po uporządkowaniu mamy
24*y
4 − 10*y
2 − 1 = 0 => y1,2 = ±
√2/2
cos2x = ±
√2/2
x = (8*n ± 1)22
o30'
21 sie 12:25