| 1 | 1 | 1 | ||||
Udowodnij, że jeżeli λk=1+ | + | + | +... , to
| |||
| k | k2 | k3 |
| 1 | 1 | 1 | ||||
l i m ∑(λk−1)=ς(1) dla ς(s)= | + | + | +....
| |||
| 1s | 2s | 3s |
| 1 | 1 | 1k | 1 | k | 1 | |||||||
λk − 1 = | + | +.... = | = | * | = | |||||||
| k | k2 | 1−1k | k | k−1 | k−1 |
| 1 | 1 | |||
∑k=2...n(λk−1) = 1 + | +...+ | |||
| 2 | n−1 |
| 1 | 1 | |||
limn→∞∑k=2...n(λk−1) = 1+ | + | +.............. = ς(1) | ||
| 2 | 3 |