matematykaszkolna.pl
Jak dowieść, że jest równe byk: Jak dowieść, że jest równe Pomógłby ktoś dowieść, że to jest prawda? sinx (Cetgx2)' = (Cetgx2) ln(Cetgx2) C− stała całkowania Policzyłem pochodną
 1 1 
(Cetgx2)' =

Cetgx2 *

 2 cos2(x2) 
i po podstawieniu nie bardzo wiem jak dowieść równość
 1 1 
sinx (

Cetgx2 *

) = (Cetgx2) ln(Cetgx2)
 2 cos2(x2) 
25 cze 14:24
Artur_z_miasta_Neptuna: byk
 sin (x/2) 
1) ln (cetg x/2 = C tg(x/2) = C

 cos (x/2) 
 1 
2)

sinx = sin (x/2) cos(x/2)
 2 
podstaw to do równania i się wszystko ładniutko piękniutko skraca
25 cze 14:29
byk: ok już mam, dzieki emotka
25 cze 15:22