lim x→0 (ctgx − 1x)
chodzi mi o jakiś najbardziej łatwy do zrozumienia sposób
| 1 | cosx | 1 | ||||
limx→0 (ctgx − | ) = limx→0( | − | ) = | |||
| x | sinx | x |
| xcosx+sinx | 0 | |||
limx→0( | } = [ | ] =Hospital=limx→0U{cosx −xsinx + cosx}{sinx + | ||
| xsinx | 0 |
| 2 | ||
xcosx} = | = 2 | |
| 1 |
| xctgx −1 | 0 |
| x | ||||||||||||||
= | = [ | ] H = | = ctgx − | = | |||||||||||||
| x | 0 | 1 | sin2x |
| sinx*cosx − x | 0 | cos2x − sin2x − 1 | ||||
= | = [ | ] H = | = | |||
| sin2x | 0 | 2sinxcosx |
| cos2x − sin2x − cos2x − sin2x | 2sin2x | |||
= | = − | = −tgx −> 0 | ||
| 2sinxcosx | 2sinxcosx |
| xcosx −sinx | ||
Patronus −−−− druga linijka: | ||
| xsinx |
| xcosx − sinx | cosx − xsinx − cosx | |||
limx→0 | =Hospital= limx→0 | = | ||
| xsinx | sinx + xcosx |
| 0 | −sinx − xcosx | |||
[ | ] =Hospital= limx→0 | = 0... | ||
| 0 | cosx + cosx − xsinx |
probowałam Hospitalem ale musiałam gdzieś robić błąd bo mi nie wychodzilo