| ln5x | ||
1∫2 | dx=* | |
| x |
| ln5x | 1 | t6 | ln6 x | |||||
∫ | dx=|t=lnx, dt= | dx| = ∫t5 dt= | = | |||||
| x | x | 6 | 6 |
| ln6 2 | ||
*= | ||
| 6 |
| 1 | x3 | |||
∫√8−x2dx=∫(8−x2)12dx= | * (8−x2)32* (8x − | ) + C? | ||
| 6 | 3 |
| 2(8−x2)3/2 | x3 | ||
(8x− | )+ c ? | ||
| 3 | 3 |
| xa+1 | ||
jest taki wzór: ∫xa dx= | (dla a≠−1 ) | |
| a+1 |
| (f(x))a+1 | ||
a ∫[f(x)]a dx ≠ | ∫f(x) dx | |
| a+1 |
| −x | ||
v=√8−x2 v'= | ||
| √8−x2 |
| x2 | 8−x2 | 8 | ||||
*=x√8−x2 +∫ | dx=x√8−x2 −∫ | dx+∫ | dx | |||
| √8−x2 | √8−x2 | √8−x2 |
| 8 | ||
=x√8−x2 −∫√8−x2 dx +∫ | dx | |
| √8−x2 |
| 1 | 8 | |||
zatem: ∫√8−x2 = | (x√8−x2 +∫ | dx | ||
| 2 | √8−x2 |