| 1 | 1 | 1 | n | ||||
+ | +...+ | = | |||||
| 1*2 | 2*3 | n(n+1) | n+1 |
| 1 | 1 | |||
L = | = | |||
| 1*(1+1) | 2 |
| 1 | 1 | |||
P = | = | |||
| 1+1 | 2 |
| 1 | 1 | 1 | n | |||||
Z: | + | +....+ | = | |||||
| 1*2 | 2*3 | n(n+1) | n+1 |
| 1 | 1 | 1 | 1 | n+1 | ||||||
T: | + | +....+ | + | = | ||||||
| 1*2 | 2*3 | n(n+1) | (n+1)(n+2) | n+2 |
| 1 | 1 | 1 | 1 | ||||
+ | +....+ | + | = ( na mocy Z) | ||||
| 1*2 | 2*3 | n(n+1) | (n+1)(n+2) |
| n | 1 | ||
+ | = | ||
| n+1 | (n+1)(n+2) |
| n(n+2)+1 | n2+2n+1 | ||
= | = | ||
| (n+1)(n+2) | (n+1)(n+2) |
| (n+1)2 | n+1 | ||
= | |||
| (n+1)(n+2) | n+2 |
| 1 | ||
L= | ||
| 2 |
| 1 | ||
P = | . | |
| 2 |
| 1 | 1 | 1 | k | |||||
zał: | + | + ... + | = | . | ||||
| 1*2 | 2*3 | k*(k+1) | k+1 |
| 1 | 1 | 1 | k+1 | |||||
teza: | + | + ... + | + U{1}{(k+1)(k+2) = | . | ||||
| 1*2 | 2*3 | k*(k+1) | k+2 |
| k | 1 | k(k+2) + 1 | ||||
dowód: L = (zał.) | + | = | = | |||
| k+1 | (k+1)(k+2) | (k+1)(k+2 |
| (k+1)2 | ||
= P. | ||
| (k+1)(k+2) |