| kπ | ||
Zał.: sin2x ≠ 0 −−> 2x ≠ kπ −−> x ≠ | ||
| 2 |
| x | ||
sin | ≠ 0 −−> dokończ | |
| 2 |
| cos2x | ||
L = ( | *cosx + sinx)(1 + cosx) = | |
| sin2x |
| 1 − 2sin2x | ||
= ( | *cosx + sinx)(1 + cosx) = | |
| 2sinxcosx |
| 1 − 2sin2x | 2sin2x | |||
= ( | + | )(1 + cosx) = | ||
| 2sinx | 2sinx |
| 1 | 1 + cosx | |||
= ( | )(1 + cosx) = | |||
| 2sinx | 2sinx |
| 1 | x | 1 | 1 + cosx | 1 + cosx | ||||||
P = | *ctg | = | * | = | ||||||
| 2 | 2 | 2 | sinx | 2sinx |
| 1+cosx | 1+cos2x2−sin2x2 | |||
L= ... = | = | = | ||
| 2sinx | 2*2sinx2cosx2 |
| 2cos2x2 | cosx2 | |||
= | = | =12ctgx2=P. | ||
| 2*2sinx2cosx2 | 2sinx2 |