trygonometria
luis: Oblicz : (1 +ctg x)(1+ctg y), dla x + y = 3/4π
Z góry dzięki; )
11 cze 20:57
luis: No proszę Was, nikt tego nie umie ?
11 cze 21:27
Maslanek: Popróbuj ze wzorów na różnicę.
ctg x = ctg(3/4π−y)
11 cze 21:28
luis: cos niezbyt mi idzie ;<
11 cze 21:35
Maslanek: I ran out of time, so try again

Time for learning geography
11 cze 21:36
11 cze 21:37
pigor: ... np. tak : z warunków zadania i tablic masz :
| | ctgxctgy−1 | |
ctg(x+y)= |
| i ctg(x+y)=34π=ctg135o=ctg(180o−45o)=−ctg45o=−1, |
| | ctgx+ctgy | |
| | ctgxctgy−1 | |
to |
| =−1 ⇒ ctgxctgy−1=−ctgx−ctgy ⇔ ctgxctgy+ctgx+ctgy+1=2 ⇔ |
| | ctgx+ctgy | |
⇔ ctgx(ctgy+1)+1(ctgy+1)=2 ⇔
(ctgy+1)(ctgx+1)=2 a to należało obliczyć . ...
11 cze 21:38
11 cze 21:40
pigor: ... dzięki , wiesz co mi w tej chwili potrzeba
11 cze 21:57