mam w zadanku obliczyć 4√−8 + 8√3i więc n=4
mając wzór ogólny: z=|z|(cosφ + i sinφ) obliczam:
|Z|= √(−8)2 + (8√3)2 = √64 + 192 = 16
| √3 | −1 | π | π | 2π | ||||||
sinφ= | a cosφ= | co daje że α= | więc φ=π− | = | ||||||
| 2 | 2 | 3 | 3 | 3 |
| φ +2kπ | φ +2kπ | π | π | |||||
więc w0=n√|z| (cos | + isin | ) = 4√16(cos | + i sin | ) = | ||||
| n | n | 6 | 6 |
| √3 | √3 | |||
2( | + | i) | ||
| 2 | 2 |
| 8π | 8π | −1 | √3 | |||||
w1= 2(cos | + i sin | ) = 2( | + | ) | ||||
| 12 | 12 | 2 | 2 |
| 14π | 14π | −√3 | 1 | |||||
w2= 2(cos | + isin | )= 2( | − | i) | ||||
| 12 | 12 | 2 | 2 |
| 20π | 20π | √3 | 1 | |||||
w3= 2(cos | + i sin | )= 2( | − | i) | ||||
| 12 | 12 | 2 | 2 |
| 8π | 2π | |||
np | = | czyli II ćwiartka | ||
| 12 | 3 |
| 8π | 1 | |||
cos | =cos120=cos(180−60)=−cos60=− | (120 − kąt II ćwiartki⇒cos120<0) | ||
| 12 | 2 |
| 14π | −√3 | |||
cos | =cos210=cos(180+30)=−cos30= | |||
| 12 | 2 |
| 20π | 1 | |||
cos | =cos300=cos(360−60)=cos60= | (kąt IV ćwiartki) | ||
| 12 | 2 |
| 8π | √3 | |||
sin | =sin120=sin(180−60)=sin60= | |||
| 12 | 2 |
| 14π | 1 | |||
sin | =sin210=sin(180+30)=sin30 =− | (kąt III ćwiartki sin210<0) | ||
| 12 | 2 |
| 20π | √3 | |||
sin | =sin300=sin(360−60) =− | |||
| 12 | 2 |