sześciokąt:
PF1 = 6Pt
| a√3 | 2r | |||
r = | −−> a = | |||
| 2 | √3 |
| a2√3 |
| r2√3 | ||||||||||
Pt = | = | = | ||||||||||
| 4 | 4 | 3 |
| r2√3 | ||
PF1 = 6* | = 2√3r2 | |
| 3 |
| b2√3 | ||
PF2 = | ||
| 4 |
| 1 | 1 | b√3 | 6r | ||||
r = | h = | −−> b = | = 2√3r | ||||
| 3 | 3 | 2 | √3 |
| 12r2√3 | ||
PF2 = | = 3√3r2 | |
| 4 |
| 2 | PF1 | 2 | ||||
TEZA: PF1 = | PF2 −−> | = | ||||
| 3 | PF2 | 3 |
| PF1 | 2√3r2 | 2 | ||||
D−D: | = | = | ||||
| PF2 | 3√3r2 | 3 |
Jak widac na rysunku trójkąt równoramienny liczy dziewięć mniejszych, a sześciokąt foremny
sześć czyli 6/9 =2/3