przekrój osiowy jest trójkątem prostok., więc z tw. Pitagorasa
l2+l2=(2r)2
2l2 = 4r2
| 1 | ||
r2 = | l2 | |
| 2 |
| √2 | ||
r = | l | |
| 2 |
| 1 | ||
h2 + | l2 = l2 | |
| 2 |
| 1 | ||
h2 = | l2 | |
| 2 |
| √2 | ||
h = | l | |
| 2 |
| 1 | 8 | 3 | ||||
V = | πr2h = | π /* | ||||
| 3 | 3 | π |
| 1 | √2 | |||
l2* | l = 8 −−> po podstawieniu | |||
| 2 | 2 |
| √2 | ||
l3 = 8 /*4 | ||
| 4 |
| 32 | ||
l3 = | = 16√2 = 24*21/2 = 29/2 | |
| √2 |