matematykaszkolna.pl
funkcje koko: jak obliczyć miejsca zerowe funkcji? cos (−4x−2π) i −ctg|3πx|)
27 maj 21:57
Mila: cos (−4x−2π) =0⇔
 π 
−4x−2π=k

i keC
 2 
 π 
−4x=2π+k

 2 
x=... ctg(3πx)=0 i x≠kπ odczytaj z wykresu
27 maj 22:07
Mila: cos (−4x−2π) =0⇔
 π 
−4x−2π=k

i keC
 2 
 π 
−4x=2π+k

 2 
x=... ctg(3πx)=0 i x≠kπ odczytaj z wykresu
27 maj 22:07
Mila: cos (−4x−2π) =0⇔
 π 
−4x−2π=k

i keC
 2 
 π 
−4x=2π+k

 2 
x=... ctg(3πx)=0 i x≠kπ odczytaj z wykresu
27 maj 22:07
%25253Cb%25253EMila%25253A%25253C%25252Fb%25253E%252520cos%252520(%2525E2%252588%2525924x%2525E2%252588%2525922%2525CF%252580)%252520%25253D0%2525E2%252587%252594%25250A%25253Ctable%252520cellspacing%25253D%2525220%252522%252520style%25253D%252522position%25253Arelative%25253B%252520margin-top%25253A0px%25253B%252520margin-bottom%25253A0px%25253B%252520padding-bottom%25253A0px%25253B%252520text-align%25253Acenter%25253B%252522%25253E%25253Ctr%25253E%25253Ctd%25253E%252526nbsp%25253B%25253C%25252Ftd%25253E%25253Ctd%252520style%25253D%252522text-align%25253Acenter%25253B%252520vertical-align%25253Abottom%25253B%252520white-space%25253A%252520pre%252522%25253E%2525CF%252580%25253C%25252Ftd%25253E%25253Ctd%25253E%252526nbsp%25253B%25253C%25252Ftd%25253E%25253C%25252Ftr%25253E%25253Ctr%25253E%25253Ctd%252520style%25253D%252522white-space%25253A%252520pre%252522%25253E%25253Cdiv%252520class%25253D%252522u1%252522%25253E%2525E2%252588%2525924x%2525E2%252588%2525922%2525CF%252580%25253Dk%25253C%25252Fdiv%25253E%25253C%25252Ftd%25253E%25253Ctd%252520style%25253D%252522text-align%25253Acenter%25253B%252520white-space%25253A%252520pre%252522%25253E%25253Cdiv%252520class%25253D%252522u1%252522%25253E%25253Chr%252520class%25253Du2%25253E%25253C%25252Fdiv%25253E%25253C%25252Ftd%25253E%25253Ctd%252520style%25253D%252522white-space%25253A%252520pre%252522%25253E%25253Cdiv%252520class%25253D%252522u1%252522%25253E%252520%252520%252520i%252520keC%25253C%25252Fdiv%25253E%25253C%25252Ftd%25253E%25253C%25252Ftr%25253E%25253Ctr%25253E%25253Ctd%25253E%252526nbsp%25253B%25253C%25252Ftd%25253E%25253Ctd%252520style%25253D%252522text-align%25253Acenter%25253B%252520vertical-align%25253Atop%25253B%252520white-space%25253A%252520pre%252522%25253E2%25253C%25252Ftd%25253E%25253Ctd%25253E%252526nbsp%25253B%25253C%25252Ftd%25253E%25253C%25252Ftr%25253E%25253C%25252Ftable%25253E%25253Ctable%252520cellspacing%25253D%2525220%252522%252520style%25253D%252522position%25253Arelative%25253B%252520margin-top%25253A0px%25253B%252520margin-bottom%25253A0px%25253B%252520padding-bottom%25253A0px%25253B%252520text-align%25253Acenter%25253B%252522%25253E%25253Ctr%25253E%25253Ctd%25253E%252526nbsp%25253B%25253C%25252Ftd%25253E%25253Ctd%252520style%25253D%252522text-align%25253Acenter%25253B%252520vertical-align%25253Abottom%25253B%252520white-space%25253A%252520pre%252522%25253E%2525CF%252580%25253C%25252Ftd%25253E%25253Ctd%25253E%252526nbsp%25253B%25253C%25252Ftd%25253E%25253C%25252Ftr%25253E%25253Ctr%25253E%25253Ctd%252520style%25253D%252522white-space%25253A%252520pre%252522%25253E%25253Cdiv%252520class%25253D%252522u1%252522%25253E%2525E2%252588%2525924x%25253D2%2525CF%252580%25252Bk%25253C%25252Fdiv%25253E%25253C%25252Ftd%25253E%25253Ctd%252520style%25253D%252522text-align%25253Acenter%25253B%252520white-space%25253A%252520pre%252522%25253E%25253Cdiv%252520class%25253D%252522u1%252522%25253E%25253Chr%252520class%25253Du2%25253E%25253C%25252Fdiv%25253E%25253C%25252Ftd%25253E%25253Ctd%252520style%25253D%252522white-space%25253A%252520pre%252522%25253E%25253Cdiv%252520class%25253D%252522u1%252522%25253E%252520%25253C%25252Fdiv%25253E%25253C%25252Ftd%25253E%25253C%25252Ftr%25253E%25253Ctr%25253E%25253Ctd%25253E%252526nbsp%25253B%25253C%25252Ftd%25253E%25253Ctd%252520style%25253D%252522text-align%25253Acenter%25253B%252520vertical-align%25253Atop%25253B%252520white-space%25253A%252520pre%252522%25253E2%25253C%25252Ftd%25253E%25253Ctd%25253E%252526nbsp%25253B%25253C%25252Ftd%25253E%25253C%25252Ftr%25253E%25253C%25252Ftable%25253Ex%25253D...%25250Actg(3%2525CF%252580x)%25253D0%252520i%252520x%2525E2%252589%2525A0k%2525CF%252580%25250Aodczytaj%252520z%252520wykresu%25250A%25250A
27 maj 22:07
Basia: Milu cosx = 0 ⇔ x = π2+kπ można napisać, że ⇔ x=(2k+1)*π2 ale nie x=k*π2 bo wtedy miałabyś dla k=0 cos0=0 co oczywiście jest nieprawdą
27 maj 22:10
Mila: Koko ma być tak. cos (−4x−2π) =0⇔
 π 
−4x−2π=

+kπ
 2 
27 maj 22:36
Mila: Basiu, nie wiem dlaczego tak głupio napisałam, sprawdziłam swoje notatki i wszędzie mam dobrze. Chyba zbyt późno to pisałam. Dzięki za ostrzeżenie. Myślę jednak, że nasz uczeń wykryłby szybko tę usterkę.
28 maj 10:19