| x | ||
t=tg | i x≠(2k+1)π i k∊C | |
| 2 |
| 2t | ||
sinx= | ||
| 1+t2 |
| 1−t2 | ||
cosx= | ||
| 1+t2 |
| 2t | 1−t2 | 2t(1−t2) | |||
+ | +2* | =1 | |||
| 1+t2 | 1+t2 | (1+t2)2 |
| 2t(1+t2)+(1−t2)(1+t2)+2*2t(1−t2) | |
=1 | |
| (1+t2)2 |
| 2t+2t3+1−t4+4t−4t3 | |
=1 | |
| (1+t2)2 |
| −t4−2t3+6t+1 | |
=1 /*(1}t2)2 | |
| (1+t2)2 |
| x | ||
tg( | =0 | |
| 2 |
| x | ||
tg( | )=tg0 | |
| 2 |
| x | |
=0+kπ k∊C | |
| 2 |
| x | ||
tg( | )=1 | |
| 2 |
| x | π | |||
tg( | )=tg( | ) | ||
| 2 | 4 |
| x | π | ||
= | +kπ k∊C | ||
| 2 | 4 |
| π | ||
x= | +2kπ | |
| 2 |
| π | ||
Oba rozwiązania x=2kπ oraz | +2kπ należa do zbioru rozwiązań | |
| 2 |