pomożecie?
| e4x | ||
g'(x) = e4x g(x) = | ||
| 4 |
| e4x*sinx | 1 | |||
∫e4x*sinx dx = | − | ∫e4x*cosx dx | ||
| 4 | 4 |
| e4x | ||
g'(x) = e4x g(x) = | ||
| 4 |
| e4x*sinx | 1 | e4x*cosx | 1 | |||||
∫e4x*sinx dx = | − | *[ | + | ∫e4x*sinx dx ] | ||||
| 4 | 4 | 4 | 4 |
| e4x*sinx | e4x*cosx | 1 | ||||
∫e4x*sinx dx = | − | − | ∫e4x*sinx dx | |||
| 4 | 16 | 16 |
| 1 | ||
dodajemy obustronnie | ∫e4x*sinx dx i mamy | |
| 16 |
| 17 | e4x*sinx | e4x*cosx | |||
∫e4x*sinx dx = | − | /*16 | |||
| 16 | 4 | 16 |
| 4 | 1 | |||
∫e4x*sinx dx = | e4x*sinx − | e4x*cosx = | ||
| 17 | 17 |
| e4x*(4sinx − cosx) | |
| 17 |
| 1 | 1 | 1 | |||
∫(e4x)'sinxdx = | e4xsinx − | ∫e4xcosxdx = | |||
| 4 | 4 | 4 |
| 1 | 1 | |||
= | e4xsinx − | ∫(e4x)'cosxdx = | ||
| 4 | 16 |
| 1 | 1 | 1 | ||||
= | e4xsinx − | e4xcosx − | ∫e4xsinxdx | |||
| 4 | 16 | 16 |
| 17 | 1 | 1 | |||
∫e4xsinxdx = | e4xsinx − | e4xcosx | |||
| 16 | 4 | 16 |
| 4 | 1 | |||
∫e4xsinxdx = | e4xsinx − | e4xcosx + C | ||
| 17 | 17 |
dziękuje wam obojgu