| π | ||
a) ∞∑ n=1 cos( | n) | |
| 6 |
| cos(n π/2) | ||
b)∞∑n=1 | ||
| 2n |
| 1 | ||
a) ∞∑ n=1 | ||
| n(n+2) |
| π | ||
a w 1b niewiem czemu 2 itd wyrazy są wieksze skoro | to 90 stopni i to jest 0 | |
| 2 |
| 1 | n−(n+2)−2 | |||
= | ale s1 wychodzi a s2 itd nie | |||
| n(n+2) | n(n+2) |
| π | √3 | |||
S1=cos | = | |||
| 6 | 2 |
| π | π | √3 | √3 | |||||
S2=S1+cos( | *2)=S1+cos | = | + | =√3 | ||||
| 6 | 3 | 2 | 2 |
| π | ||
S3=S2+cos( | *3)=√3+0=√3 | |
| 6 |
| π | π | 1 | ||||
S4=S3+cos( | *4)=√3−cos | =√3− | ||||
| 6 | 3 | 2 |
| 5 | ||
S5=S4+cos( | π)= | |
| 6 |
| cos(1*π/2) | ||
S1= | =0 | |
| 21 |
| cosπ | −1 | |||
S2=S1+ | =0+ | |||
| 4 | 4 |
| −1 | ||||||||||||
S3=S2+ | = | +0= | |||||||||||
| 8 | 4 |
| n+1 | ||
ok ale np w takim przykładzie gdy robię sume s2 : ∑ ∞ n=1 | ||
| n2 |
| 1+1 | ||
S1=a1= | =2 | |
| 12 |
| 2+1 | ||
S2=a1+a2=S1+a2=2+ | = | |
| 22 |
| 3 | 3 | |||
ok ale s2 wychodzi 2 | natomiast w odpowiedziach jest samo | |||
| 4 | 4 |