Pochodna wartosci bezwzglednej
Rodney: Tak sie zastanawiam...
Jak obliczyć pochodną funkcji gdy jest w niej wartosc bezwzgledna w wartosci bezwzglednej?
Wiem, ze pochodna od wartosci bezwzglednej to funkcja sgn...
Wiem, ze trzeba zastosowac wzor na pochodna funkcji zlozonej i umiem to zrobic gdy mamy do
czynienia z jedna wartoscia bezwzgledna, ale co zrobic jak sa dwie?
Chodzi mi o np takie cos:
y=|x−|2x−2||
11 maj 21:05
Basia:
nie ma zmiłuj się trzeba po prostu rospisać
1.
2x−2≥ 0 ⇔ x≥1
wtedy
f(x) = |x−2x+2| = |−x+2|
1.1
−x+2≥0 ⇔ x≤2
wtedy
f(x) = −x+2
czyli dla x∊<1;2> f(x) = −x+2
1.2
−x+2<0 ⇔ x>2
wtedy
f(x) = −(−x+2) = x−2
czyli dla x∊(2;+∞) f(x) = x−2
2.
2x−2<0 ⇔ x<1
wtedy
f(x)=|x−[−(2x−2)]| = |x+2x−2| = |3x−2|
2.1
3x−2≥0 ⇔ x≥23
wtedy
f(x) = 3x−2
czyli dla x∊<23;1) f(x) = 3x−2
2.2
3x−2<0 ⇔ x<23
wtedy
f(x) = −3x+2
czyli dla x∊(−∞;23) f(x) = −3x+2
zbierz teraz wszystko razem
w przedziałach otwartych pochodne policzysz normalnie
natomiast na końcach przedziałów czyli w punktach 23, 1, 2
musisz zbadać najpierw ciągłość funkcji;
jeżeli nie jest ciągła to nie jest też różniczkowalna
jeżeli jest ciągła to jeszcze trzeba zbadać różniczkowalność (wprost z definicji)
12 maj 00:06