| π | 1 | |||
Dla jakich wartości parametru k równanie 2sin(x− | )=2|k− | |−5
| ||
| 3 | 2 |
| 1 | ||
−2≤2|k− | |−5≤2 | |
| 2 |
| 1 | ||
−2≤2Ik− | I≤7//:2 | |
| 2 |
| 1 | 7 | |||
−1≤Ik− | I≤ | |||
| 2 | 2 |
| 1 | 7 | 1 | ||||
Ik− | I≤ | i Ik− | I≥−1 | |||
| 2 | 2 | 2 |
| 1 | 7 | 1 | 1 | |||||
k− | ≤ | i k− | ≥− | i k∊R | ||||
| 2 | 2 | 2 | 2 |
| 1 | 1 | |||
a skąd się wziął zapis k− | ≥− | |||
| 2 | 2 |
| π | 1 | |||
2sin(x− | )=2Ik− | I−5 //:2 | ||
| 3 | 2 |
| π | 1 | 5 | ||||
sinx(x− | )=Ik− | I− | ||||
| 3 | 2 | 2 |
| 1 | 5 | |||
−1≤Ik− | I− | ≤1 | ||
| 2 | 2 |
| 1 | 5 | 1 | 5 | |||||
Ik− | I− | ≥−1 i Ik− | I− | ≤1 | ||||
| 2 | 2 | 2 | 2 |
spróbuję jeszcze raz)
| 1 | 3 | 1 | 7 | |||||
Ik− | I≥ | i Ik− | I≤ | |||||
| 2 | 2 | 2 | 2 |
| 1 | 3 | 1 | 3 | 1 | 7 | 1 | 7 | |||||||||
(k− | ≥ | lub k− | ≤− | ) i (k− | ≤ | i k− | ≥− | ) | ||||||||
| 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |