punkty wspólne okręgu
Monika: Liczba punktów wspólnych okręgu o równaniu (x + 2)2 + (y − 3)2 = 4 z osiami układu
współrzędnych jest:
a) 0
b) 1
c) 2
d) 4
potrzebuję razem z obliczeniami, albo chociaż jakąś podpowiedź, bo siedzę nad tym cały wieczór,
zapisałam tonę papieru i nic z tego nie wyszło...
23 kwi 22:57
Skipper:

podstaw za x=0 ... otrzymasz y=3
podstaw za y=0 otrzymasz (x+2)
2=−5 ... czyli sprzeczność
... i wszystko jasne −
23 kwi 23:10
Mila: Moniko, narysuj ten okrąg. S=(−2,3) r=2 i wszystko zobaczysz.
To jest z Aksjomatu?
23 kwi 23:11
krystek: Algebraicznie:Z osią OX to y=0 wstawiasz
Z osią OY to x=0 wstawiasz do równania okręgu.
23 kwi 23:16
Monika: tak...
23 kwi 23:16
Asior:

b) 1
(x−a)
2 + (y−b)
2 = r
2 S = (a, b) − współrzędne środka okręgu
[x − (−2)]
2 + [y − 3]
2 = 2
2
a = −2
b = 3
r = 2
promień jest większy od odległości środka okręgu od X (nie przecina się) i równy odległości od
osi Y (jeden punkt wspólny)
23 kwi 23:19