Bardzo, bardzo, bardzo proszę o pomoc:(
makusia: Pole trójkąta jest rowne 20 cm2, a jeden z jego kątów ma miarę 150 stopni. Wiedząc, że
długosci wysokosci poprowadzonych z wierzchołków kątów ostrych pozostają w stosunku 5:4
oblicz długości boków trójkąta przy kącie rozwartym.
20 kwi 17:59
Maciek: Nikt nie pomógł? Jeszcze aktualne?
20 kwi 19:40
makusia: nikt nie pomógł, niestety:(
20 kwi 20:38
Ares:
masz odp?.. do tego zadania?
20 kwi 20:51
makusia: tak mam wynik to: 8 cm i 10 cm
20 kwi 22:03
Eta: Pomagam
20 kwi 22:47
Eta:
zapisz pole trójkąta tak:
P= 12a*b*sin150o gdzie a i b zawieraja sie w ramionach kąta 150o
sin 150o = sin(160o − 30o) = sin 30o = 12
więc PΔ= 12*a*b*12
zatem
a*b4= 20
to a*b= 80
teraz pole trójkata mozna obliczyć tak:
p= 12a*ha i p= 12b*hb pola są równe więc
12a*ha = 12b*hb /*2
to a*ha = b*hb więc ab =hbha
czyli ab = 54
to a = 54*b
masz układ równań: a*b= 80 i a = 54*b
po podstawieniu mamy:
54*b *b = 80
54 b2 = 80 to b2= 64 => b= 8 to a = 54*8
więc a = 10
odp: a= 10 b= 8
20 kwi 22:57
makusia: dzięki bardzo
20 kwi 23:06
Eta: Widzę chochlika

poprawiam
oczywiście sin150
o = sin (
180o − 30
o) = sin30
o
20 kwi 23:27
makusia: oki

dzięki jeszcze raz
20 kwi 23:43