Sprowadzam wszystko do postaci 2 podniesionej do jakiejs
potegi (w zalezonosci od czynnika) i nie wiem co dalej.
| an | ||
Czy to jest bn = | ? | |
| 2n |
an : 1,1,−1,−1,1,1,−1,−1.....
więc wyrazy bn =( 2)an
ala n= 1 b1 = 21 = 2 n= 2 to b2 = 21 = 2
dla n= 3 b3 = 2−1= 12 b4=12
| 1 | ||
czyli bn: 2,2, | , 12, 2,2, 12,12, 2,2.....
| |
| 2 |
Wiec twoj sposob nie bardzo...
| 1 | 1 | 1 | 1 | |||||
S20 = | + | − | − | + | ||||
| 2 | 22 | 23 | 24 |
| 1 | 1 | 1 | 1 | |||||
+ | − | − | +..........+ | |||||
| 25 | 26 | 27 | 28 |
| 1 | 1 | 1 | 1 | |||||
+ | − | − | ||||||
| 217 | 118 | 219 | 220 |
| 2+1 | 2+1 | 2+1 | ||||
S20 = ( | + | + ..... + | ) − | |||
| 22 | 26 | 218 |
| 2+1 | 2+1 | 2+1 | ||||
( | + | +.......+ | ) | |||
| 24 | 28 | 220 |
| 3 | 1 | |||
c1 = | q= | |||
| 22 | 24 |
| 3 | 1 | |||
d1 = | q= | |||
| 24 | 24 |
| 3 | 1 | 1 | ||||
S20 = | *( 1 + | +......+ | ) − | |||
| 22 | 24 | 216 |
| 3 | 1 | 1 | ||||
*(1 + | +......+ | ) = | ||||
| 24 | 24 | 216 |
| 3 | 3 | 1 | 1 | 1 | ||||||
( | − | )*( 1 + | + | +.....+ | )= | |||||
| 4 | 16 | 24 | 28 | 216 |
| 9 | 1 | 1 | 1 | |||||
*( 1 + | + | +.....+ | ) | |||||
| 16 | 24 | 28 | 216 |
| 1 | ||
c1 = 1 q= | ||
| 24 |
| 1−q5 |
| ||||||||||||
Sc5 = c1* | = 1* | = | |||||||||||
| 1−q |
|
| 220−1 | 24 | |||
* | = | |||
| 220 | 24−1 |
| 220−1 | ||
| 216(24−1) |
| 9 | ||
S20 = | *Sc5 | |
| 16 |
| 9*(220−1) | ||
S20 = | ||
| 220*(24−1) |
Tak jak odczytałam , tak rozwiazywałam