Dany jest stożek o wierzchołku S
qish: Dany jest stożek o wierzchołku S, promieniu podstawy r i wysokości 3r. Na płaszczyźnie podstawy
stożka poprowadzono prostą przecinającą okrąg podstawy w punktach A i B. Wyznaczyć odległość
tej siecznej od środka podstawy stożka wiedząc, że pole trójkąta ABS jest równe r2.
Jakieś pomysły? Ja się zaciąłem...:(
11 kwi 18:29
qish: Pomoże ktoś? Proszę
12 kwi 20:31
Janusz:

y = ?
ΔABO − równoramienny
h = 3r
CS = AS = BS
P
ABS = r
2
|CS|
2 = (3r)
2 + r
2
|CS| =
√10r
r
2 =
12 * AS * BS * sinα
sinα =
15
(cosα)
2 = 1 − (
15)
2
cosα =
2√65
x
2 = |AS|
2 + |BS|
2 − 2 * |AS| * |BS| * cosα
x = 2r
√5−2√6
y
2 + (
x2)
2 = r
2
y = r√2(√6−2)
21 kwi 18:20