| √x2+x−√x2−1)(√x2+x+√x2−1) | ||
limx→−∞ | = | |
| √x2+x+√x2−1 |
| x2+x − (x2−1) | ||
limx→−∞ | = | |
| √x2+x+√x2−1 |
| x+1 | ||
limx→−∞ | = | |
| √x2+x+√x2−1 |
| xx + 1x | ||
limx→−∞ | = | |
| √x2+xx + √x2−1x |
| 1 + 1x | ||
limx→−∞ | = | |
| √x2+xx2 + √x2−1x2 |
| 1 + 1x | ||
limx→−∞ | = | |
| √x2x2+xx2 + √x2x2−1x2 |
| 1 + 1x | 1+0 | 1 | ||||
limx→−∞ | = | = | ||||
| √1+1x + √1−1x2 | √1+0 + √1−0 | 2 |