| 1+tgx | 1+tgx | |||
∫ | dx = ∫ | dx
| ||
| sin(2x) | 2sinxcosx |
| 1 | ||
dx = | dt
| |
| 1+t2 |
| t | ||
sinxcosx = | ||
| 1+t2 |
| 1 | 1+t | |||||||||
= | ∫ | dt = | ||||||||
| 2 |
|
| 1 | ||
zapomniałaś o zamianie dx na | dt, poza tym dobrze | |
| 1+t2 |
dzięki
sprowadzić do całek elementarnych np.
tak :
| 1+tgx | 1 | tgx | ||||
∫ | dx= ∫ | dx + ∫ | dx= | |||
| sin2x | sin2x | sin2x |
| sin2x+cos2x | sinx | |||
= ∫ | dx + ∫ | dx= | ||
| 2sinxcosx | 2sinxcos2x |
| −sinxdx | cosxdx | dx | ||||
= 12 (− ∫ | + ∫ | + ∫ | ) = | |||
| cosx | sinx | cos2x |