| 4 + 8 | ||
x1 = | = −3 | |
| −4 |
| 4 − 8 | ||
x2 = | = 1 | |
| −4 |
| 4 | ||
p = | = 1 | |
| −4 |
| −64 | ||
q = | = 8 | |
| −8 |



lub np. tak : y= −2x2−4x+6=
= −2(x2+2x−3)= −2(x2−x+3x−3)= −2[x(x−1)+3(x−1)]= −2(x−1)(x+3) − postać iloczynowa ;
= −2(x2+2x−3)= −2(x2+2x+1−4)=−2(x+1)2+8 − szukana postać kanoniczna . ...