ciag geometryczny - dziwny sposob ??;/
jok: czesc
ciag geometryczny
suma 3 kolejnych wyrazow ciagu geometrycznego wynosi 7, a
3 = 4, Oblicz a
1 oraz a
2
a + aq + 4 = 7
a+aq = 3
a(1+q) = 3
S
2 = 3
a
2 = S
2 − S
1
3q
2(1+q) = (q
2+2q + 1)(12)
3q
2 + 3q
2 = 12q
2 + 24q + 12
0= −3q
3 + 9q
2 +24q + 12 m.zerowym jest liczba −1
po podzieleniu wychodzi
−3q
2 + 12q + 12 = 0
Δ = 288, pozniej tylko
q>0
q
1 = 2 + 2
√2 > 0
q
2 < 0
| | 3 | |
a1 = |
| , powinno wyjsc 1 :Z |
| | 2+2√2 | |
26 mar 19:07
Beti:
a może tak ?:
a,b,c − kolejne wyrazy, c=4
a+b+c = 7
b
2 = ac
a+b = 3
b
2 = 4a
a = 3−b
b
2 = 12−4b
b
2+4b−12 = 0
Δ = 16+48 = 64
√Δ = 8
| | −4−8 | |
b1 = |
| = −6 −−> a1 = 3−(−6) = 9 |
| | 2 | |
| | −4+8 | |
b2 = |
| = 2 −−> a2 = 3−2 = 1 |
| | 2 | |
czyli szukane wyrazy to: 9,−6(,4) oraz 1,2(,4)
26 mar 19:17
jok: moze byc, jeszcze mozna tak:
a
3 = aq
2
4 = aq
2
Mozesz sprawdzic moj pierwszy sposob, poniewaz inne potrafie, chcialem zrobic oryginalnie
troche.
26 mar 19:21
jok: up
26 mar 20:18
jok: sprawdzi ktos moje pierwsze rozwiazanie dlaczego mi nie wychodzi?
26 mar 21:03
jok:
26 mar 21:25