proste równanie ;)
mr. max: Rozwiązać równanie
xy+
yz+
zt+
tx=1 w liczbach naturalnych x,y,z,t.
Nie potrafię tego zrobić, potrzebuje podpowiedzi/pomocy
20 mar 20:31
Artur z miasta Neptuna:
ale to Ty masz rozwiązać

równianie z 4 niewiadomymi
20 mar 20:38
mr. max: no mam znaleźć wszystkie rozwiązania tego równania w liczbach naturalnych x,y,z,t
20 mar 20:39
mr. max: no mam znaleźć wszystkie rozwiązania tego równania w liczbach naturalnych x,y,z,t
20 mar 20:40
Saizou : jest nieskończenie wiele rozwiązań ale musi zachodzić warunek z=y=x=t tak mi się wydaje
20 mar 20:41
Saizou : mój błąd złe rozumowanie
20 mar 20:42
mr. max: gdyby tak było to by nie było to równe 1 a 4

tak mi sie wydaje
20 mar 20:42
Tragos: brak rozwiązań
popatrz logicznie.. masz dodawanie czterech składników dodatnich (patrz. założenia), aby to
| | t | |
było = 1, trzy składniki musisz mieć = 0, tylko że jak np. x = 0, to dalej masz |
| , a to |
| | 0 | |
jest niewykonalne
oczywiście jeszcze należy pamiętać o tym, że składniki mogą być ułamkami i wówczas
| | x | |
pierwszy składnik |
| , czyli musimy mieć x < y |
| | y | |
drugi y < z
z < t
t < x
x < y < z < t < x
sprzeczność
20 mar 20:44
mr. max: treść zadania wskazuje na to że te rozwiązania są...to jakieś dziwne jest
20 mar 20:49
Tragos: | | x | | y | | z | | t | |
sprawdziłem skryptem i wychodzi nawet, że |
| + |
| + |
| + |
| ≥ 4, a co |
| | y | | z | | t | | x | |
dopiero = 1
20 mar 20:53