| π | π | π | ||||
ad. a) cosx+sinx=1*cosx+1*sinx=sin | *cosx+sinx*cos | =sin(x+ | ) | |||
| 4 | 4 | 4 |
| π | ||
sin(x+ | )=0 lub sinx=0 | |
| 4 |
| 2 | √2 | √2 | 2 | π | ||||||
cosx+sinx=1*cosx+1*sinx= | ( | *cosx+sinx* | )= | sin(x+ | )= | |||||
| √2 | 2 | 2 | √2 | 4 |
| π | ||
√2sin(x+ | ) | |
| 4 |
| 1 | ||
sinx= | ||
| 2 |
| π | 5 | |||
x= | +2kπ lub x= | π+2kπ | ||
| 6 | 6 |
| 1 | ||
c) sin2x= | ||
| 2 |
| √2 | √2 | |||
sinx= | lub sinx=− | |||
| 2 | 2 |
| π | 3 | 5 | 7 | |||||
x= | +2kπ lub x= | π+2kπ lub x= | π+2kπ lub x= | π+2kπ | ||||
| 4 | 4 | 4 | 4 |
| π | 3 | |||
co krócej można zapisać x= | +kπ lub x= | π+kπ | ||
| 4 | 4 |