| x2−4x−1 | ||
a) | =1 | |
| 3−x |
| 2x−3 | ||
b) | =x+1 | |
| 5−x |
| 2−x | ||
c) | =2 | |
| 2−2x−x2 |
| x2 − 4x − 1 | 3 − x | ||
= | |||
| 3 − x | 3 − x |
| x2 − 4x − 1 | 3 − x | ||
− | = 0 | ||
| 3 − x | 3 − x |
| x2 − 4x − 1 − 3 + x | |
= 0 | |
| 3 − x |
| x2 − 3x − 4 | |
= | |
| 3 − x |
| 3 − 5 | ||
x1 = | = −1 | |
| 2 |
| 3 + 5 | ||
x2 = | = 4 | |
| 2 |
| (x + 1)(x − 4) | |
= | |
| −(x − 3) |
| x2−4x+x−4 | |
| −x+3 |
| x(x + 1)−4(x + 1) | |
= | |
| −x + 3 |
| (x − 4)(x + 1) | |
= ... | |
| −x + 3 |