Czy wartość danego ułamka jest liczbą całkowitą?
Stokrotka: | 1*2*3*4*5*6*...*23 | |
Dany ułamek |
| , który w liczniku ma iloczyn kolejnych |
| 1−2+3−4+5−6+...+203 | |
liczb naturalnych od 1 do 23, a w mianowniku kolejne liczby naturalnie od 1 do 203 są
naprzemian odejmowane i dodawane. Czy wartość tego ułamka jest liczbą całkowitą?
8 mar 16:25
Mona: TAK = 0
bo
1−2+3−4+5−6+7− ...... −200+201−202+203 = 204−204+204−204+204− .....−204+204 = 0
cokolwiek dzielone przez 0 daje zero a to jest liczba całkowita
8 mar 16:33
Artur z miasta Neptuna:
Mona − coś nie bardzo:
1−2 = −1
3−4 = −1
....
201 − 202 = −1
203 = 203
_______________+
| 202 | |
−1* |
| + 203 = −101 + 203 = 102 .... a nie 0 |
| 2 | |
po drugie ... dzieląc coś (nie zerowego) przez 0 wcale nie dostajesz 0
8 mar 17:17
Artur z miasta Neptuna:
Stokrotka ...
mianownik = 102
102 = 2*51 = 2*3*17
a wszystkie te trzy liczby (2, 3, 17) masz w mianowniku ... więc tak ... to jest liczba
całkowita
8 mar 17:19