(x−b)(x−c) | (x−c)(x−a) | (x−a)(x−b) | ||||
1) a2 | +b2 | +c2 | =x2 | |||
(a−b)(a−c) | (b−c)(b−a) | (c−a)(c−b) |
a | b | c | ||||
2) jeśli | + | + | = 0, gdzie a≠b, b≠c i a≠c, | |||
b−c | c−a | a−b |
a | b | c | ||||
to | + | + | = 0 | |||
(b−c)2 | (c−a)2 | (a−b)2 |
a | b | c | |||
+ | + | = 0 // : (b−c) | |||
b−c | c−a | a−b |
a | b | c | |||
+ | + | = 0 // : (c−a) | |||
b−c | c−a | a−b |
a | b | c | |||
+ | + | = 0 // : (a−b) | |||
b−c | c−a | a−b |
a | b | c | |||
+ | + | = 0 | |||
(b−c)2 | (c−a)(b−c) | (a−b)(b−c) |
a | b | c | |||
+ | + | = 0 | |||
(b−c)(c−a) | (c−a)2 | (a−b)(c−a) |
a | b | c | |||
+ | + | = 0 | |||
(b−c)(a−b) | (c−a)(a−b) | (a−b)2 |
a | b | c | a | b | |||||
+ | + | + | + | + | |||||
(b−c)2 | (c−a)(b−c) | (a−b)(b−c) | (b−c)(c−a) | (c−a)2 |
c | a | b | c | |||||
+ | + | + | = 0 | |||||
(a−b)(c−a) | (b−c)(a−b) | (c−a)(a−b) | (a−b)2 |
a | b | c | b | a | ||||||
( | + | + | ) + ( | + | ) + | |||||
(b−c)2 | (c−a)2 | (a−b)2 | (c−a)(b−c) | (b−c)(c−a) |
c | a | c | b | |||||
( | + | ) + ( | + | ) = 0 | ||||
(a−b)(b−c) | (b−c)(a−b) | (a−b)(c−a) | (c−a)(a−b) |
a | b | c | a+b | a+c | ||||||
( | + | + | ) + | + | + | |||||
(b−c)2 | (c−a)2 | (a−b)2 | (c−a)(b−c) | (b−c)(a−b) |
b+c | ||
= 0 | ||
(c−a)(a−b) |
a | b | c | (a+b)(a−b) | |||||
( | + | + | ) + | + | ||||
(b−c)2 | (c−a)2 | (a−b)2 | (a−b)(c−a)(b−c) |
(a+c)(c−a) | (b+c)(b−c) | |||
+ | = 0 | |||
(a−b)(c−a)(b−c) | (a−b)(c−a)(b−c) |
a | b | c | (a2−b2)+(c2−a2)+(b2−c2) | |||||
( | + | + | )+ | =0 | ||||
(b−c)2 | (c−a)2 | (a−b)2 | (a−b)(c−a)(b−c) |
a | b | c | 0 | |||||
( | + | + | )+ | = 0 | ||||
(b−c)2 | (c−a)2 | (a−b)2 | (a−b)(c−a)(b−c) |
a | b | |||
( | + | = 0 | ||
(b−c)2 | (c−a)2 |