maturalne
aniaa :): podstawa ostrosłupa jest prostokąt o bokach 1 i √2. Najkrótsza krawędz boczna jest
prostopadła do podstawy , a najdłuzsza krawedz boczna jest nachylona do podstawy pod kątem 30
oblicz pole powierzchni całkowitej tego ostrosłupa.
1 mar 21:03
Patronus:

Ok to niech
zielona = 1,
różowa =
√2
niebieska jest ⊥do brązowej
a brązowa i czerwona sa pod kątem 30
Ok to brązowa jest przekątna prostokata o bokach 1 i
√2
to z Pitagorasa mozna obliczyć że ma
√3
| | √3 | | niebieska | |
tg kata między czerwoną a brązową to tg30 = |
| = |
| |
| | 3 | | √3 | |
Zatem niebieska = 1
No to już dalej łatwo?
1 mar 21:10
aniaa :): i to jest na pewno dobrze?
bo mi zły wynik w polu wychodzi
1 mar 21:33
Patronus: A jak dalej liczysz pole, na razie na pewno jest dobrze
1 mar 21:37
aniaa :): własnie nie jestem pewna jak dalej i tak tylko próbowałam
1 mar 21:39