| 1 | 1 | 1 | 13 | |||||
∀n∊N, n≥2 sn = | + | +...+ | > | |||||
| n+1 | n+2 | 2n | 24 |
| 1 | 1 | 13 | ||||
dla n=2 s2= | + | > | // niewiem czy dobrze | |||
| 1+n | 2+2 | 24 |
| 1 | 13 | |||
czy moze ma być tak : s2= | > | ![]() ![]() | ||
| 1+2 | 24 |
| 1 | 1 | 1 | 13 | |||||
sn = | + | +...+ | > | Prawda | ||||
| n+1 | n+2 | 2n | 24 |
| 1 | 1 | 1 | 1 | 13 | ||||||
sn+1 = | + | +...+ | + | > | ||||||
| n+1 | n+2 | 2n | 2(n+1) | 24 |
? przecież w zadaniu mam za pomocą indukcji
Jednak skoro ma być za pomocą indukcji to musisz poczekać na kogoś kto ją w miarę ogarnia
| 1 | 1 | 1 | 1 | 4+3 | 7 | 14 | 13 | |||||||||
L= | + | = | + | = | = | = | > | |||||||||
| 2+1 | 2*2 | 3 | 4 | 12 | 12 | 24 | 24 |
| 1 | 1 | 1 | 13 | |||||
Z: | + | +....+ | > | |||||
| n+1 | n+2 | 2n | 24 |
| 1 | 1 | 1 | 1 | 1 | 13 | |||||||
T: | + | +....+ | + | + | > | |||||||
| n+2 | n+3 | 2n | 2n+1 | 2n+2 | 24 |
| 1 | 1 | 1 | 1 | 1 | |||||
+ | +....+ | + | + | = | |||||
| n+2 | n+3 | 2n | 2n+1 | 2n+2 |
| 1 | 1 | 1 | 1 | 1 | 1 | |||||||
[ | + | +....+ | ] − | + | + | > | ||||||
| n+1 | n+2 | 2n | n+1 | 2n+1 | 2n+2 |
| 13 | 1 | 1 | 1 | ||||
+ | + | − | = | ||||
| 24 | 2(n+1 | 2n+1 | n+1 |
| 13 | 2n+1+2(n+1) − 2 | ||
+ | = | ||
| 24 | 2(n+1)(2n+1) |
| 13 | 2n+1+2n+2−2 | ||
+ | = | ||
| 24 | 2(n+1)(2n+1) |
| 13 | 4n+1 | 13 | |||
+ | > | ||||
| 24 | 2(n+1)(2n+1) | 24 |
| 4n+1 | ||
bo | >0 | |
| 2(n+1)(2n+1) |
| 1 | ||
w T: na koncu jest | ![]() | |
| 2n+2 |