| x1 + x2 | ||
aby obliczyc q, musze znac p = | ||
| 2 |
| x1 + x2 | x1 + x2 | |||
a( | − x1)( | −x2) = q | ||
| 2 | 2 |
| x2−x1 | x1 − x2 | |||
a( | )( | ) | ||
| 2 | 2 |
| a | a | a | |||
(x1 − x2)(x2−x1) = | (x1x2 − x12 − x22 + x1x2) = − | (x1 − | |||
| 4 | 4 | 4 |
| a | ||
q= − | (x1 − x2)2 | |
| 4 |
| x1+x2 | ||
a(x−x1)(x−x2) = a(x2−(x1+x2)x +x1x2) = a(x− | )2 − | |
| 2 |
| a | x1+x2 | a | ||||
(x12+2x1x2+x22 − 4x1x2) = a(x− | )2 − | (x1 − x2)2 | ||||
| 4 | 2 | 4 |
| x1+x2 | ||
p= | ||
| 2 |
| a | ||
q = − | (x1 − x2)2 | |
| 4 |