| 1 | 1 | |||
7(x + | ) − 2 (x2 + | ) = 9 | ||
| x | x2 |
| 1 | ||
1. 2 lub | ||
| 2 |
| 1 | ||
x+ | =t | |
| x |
| 1 | 1 | |||
(x2+ | )=(x+ | )2−2 | ||
| x2 | x |
| 1 | 1 | 1 | 1 | 1 | ||||||
7(x+ | ) −2(x2+ | )=9 ⇔ 7(x+ | ) −2(x2+2x* | + | −2)=9 ⇔ | |||||
| x | x2 | x | x | x2 |
| 1 | 1 | 1 | 1 | |||||
7(x+ | ) −2(x+ | )2+4=9 ⇔ 2(x+ | )2 −7(x+ | ) +5=0 i Δ=72−4*2*5=9 ⇒ | ||||
| x | x | x | x |
| 1 | 7−3 | 1 | 7+3 | 5 | ||||||
x+ | = | =1 lub x+ | = | = | ⇔ x2−x+1=0 lub 2x2−5x+2=0 ⇔ | |||||
| x | 2*2 | x | 4 | 2 |
| 5−3 | 1 | 5+3 | ||||
x∊∅ lub Δ=25−16=9 ⇒ x= | = | lub x= | =2 ⇔ x∊{12,2}. ... ![]() | |||
| 4 | 2 | 4 |
| x+27 | x+33 | x+33 | ||||
−27+6(n−1)=x ⇔ n−1= | ⇔ n= | , zatem Sn=72 ⇔ | (−27+x)=72 | |||
| 6 | 6 | 12 |