| e(a+ib)x | eibx | |||
∫eaxeibxdx = ∫e(a+ib)xdx = | = eax* | = | ||
| a+ib | a+ib |
| 1 | a−ib | |||
= eax* | *(cosbx + isinbx) = eax* | *(cosbx + isinbx) = | ||
| a+ib | a2+b2 |
| acosbx + aisinbx − ibcosbx + bsinbx | ||
= eax* | ||
| a2+b2 |
| eax | eax | |||
= | (acosbx + bsinbx) + i* | (asinbx − bcosbx). | ||
| a2+b2 | a2+b2 |
| eax | ||
∫eaxcos(bx)dx = | (acosbx + bsinbx) + c. | |
| a2+b2 |
| eax | ||
∫eaxsin(bx)dx = | (asinbx − bcosbx) + c. | |
| a2+b2 |