e(a+ib)x | eibx | |||
∫eaxeibxdx = ∫e(a+ib)xdx = | = eax* | = | ||
a+ib | a+ib |
1 | a−ib | |||
= eax* | *(cosbx + isinbx) = eax* | *(cosbx + isinbx) = | ||
a+ib | a2+b2 |
acosbx + aisinbx − ibcosbx + bsinbx | ||
= eax* | ||
a2+b2 |
eax | eax | |||
= | (acosbx + bsinbx) + i* | (asinbx − bcosbx). | ||
a2+b2 | a2+b2 |
eax | ||
∫eaxcos(bx)dx = | (acosbx + bsinbx) + c. | |
a2+b2 |
eax | ||
∫eaxsin(bx)dx = | (asinbx − bcosbx) + c. | |
a2+b2 |