pomocy...
Gusia: Ile liczb dwucyfrowych o różnych cyfrach można utworzyć ze zbioru cyfr{0,1,2,3,4,5}?
23 lut 21:52
BLAZEJ_505: 5*6=30
23 lut 21:53
Artur z miasta Neptuna:
no a jak myślisz ... ile cyfr może być na miejscu dziesiętnym (jakie)? jak już tam masz cyfrę,
to ile cyfr może być na miejscu jedności?
23 lut 21:54
Artur z miasta Neptuna:
bądź 5*5 = 25 ... zależy czy z czy bez powtórzeń
23 lut 21:54
Eta:
na pierwsze miejsce jedna z pięciu ( bo bez zera)
na drugie też jedna z pięciu ( bo z zerem ale bez tej pierwszej
z reguły mnożenia
5*5= ........ takich liczb
23 lut 21:55
BLAZEJ_505: i znowu głupi błąd wczoraj podobne zadanie robiłem i na tym samym poległem
23 lut 21:56
Eta:
23 lut 21:57
Gusia: nie wiem...
23 lut 21:57
Tragos: dokładnie 25

tutaj potwierdzenie, hehe


1. 10
2. 12
3. 13
4. 14
5. 15
6. 20
7. 21
8. 23
9. 24
10. 25
11. 30
12. 31
13. 32
14. 34
15. 35
16. 40
17. 41
18. 42
19. 43
20. 45
21. 50
22. 51
23. 52
24. 53
25. 54
23 lut 22:00
BLAZEJ_505: przecież Eta wszystko wypisała że na pierwszym miejscu nie może być ) czyli może być 5
cyfr, a na drugim mogą być wszystkie z wyjątkiem tej która jest na pierwszym czyli też 5
a 5*5 to 25
23 lut 22:00
BLAZEJ_505: i kolejny raz podziw dla Tragos
23 lut 22:01
Eta:
23 lut 22:02
Eta:
@
Targos
A jak
Gusia policzy jeszcze te po lewej? ..... to wyjdzie jej razem
50
23 lut 22:04
Gusia: nie kumam
23 lut 22:04
Gusia: Ok ,Dzięki wielkie
23 lut 22:05
Eta:
Bo nie jesteś
żabką
23 lut 22:05
BLAZEJ_505: 10a+b gdzie a∊{1,2,3,4,5,} b ∊{0,1,2,3,4,5} a≠b
23 lut 22:07
Tragos: oj.. następnym razem dodam wyżej, że pierwsza kolumna to liczba porządkowa
23 lut 22:08
Artur z miasta Neptuna:
ejjj no ale to zależy czy jest założenie, że a≠b
23 lut 22:10