Oblicz a_1 i r.
kasssia: 3a1 + 4r = 35
(a1 +r) (a1 + r) = a1 (a1 +3r)
Oblicz a1 i r.
22 lut 19:54
nirw: | ⎧ | 3a1 +4r = 35 | |
| ⎩ | (a1 + r)(a1 + r) =a1(a1 +3r) |
|
| ⎧ | 3a1 = 35 − 4r | |
| ⎩ | a12 +2a1r + r2 = a12 +3a1r) |
|
| ⎧ | a1 = 353 − 43r | |
| ⎩ | r2 − a1r = 0 |
|
| ⎧ | a1 = 353 − 43r | |
| ⎩ | r2 − (353 − 43r)r = 0 |
|
| ⎧ | a1 = 353 − 43r | |
| ⎩ | 3r2 − 35r +4r2 =0 |
|
| ⎧ | a1 = 353 − 43r | |
| ⎩ | 7r2 − 35r = 0 |
|
| ⎧ | a1 = 353 − 43r | |
| ⎩ | 7r(r−5)=0 |
|
| ⎧ | a1 = 353 − 43r | |
| ⎩ | r= 0 ∨ r=5 |
|
| ⎧ | a1 = 353 − 430 ∨ a1 = 353 − 435 | |
| ⎩ | r= 0 ∨ r=5 |
|
| ⎧ | a1 = 353 ∨ a1 = 353 − 203 | |
| ⎩ | r= 0 ∨ r=5 |
|
| ⎧ | a1 = 353 ∨ a1 = 153 | |
| ⎩ | r= 0 ∨ r=5 |
|
| ⎧ | a1 = 353 ∨ a1 = 5 | |
| ⎩ | r= 0 ∨ r=5 |
|
23 lut 14:45