Przyklady, ktore mi zostaly i nie wychodzą mi...:
1) ∫ x 5x dx
2) ∫ √x ln x dx
3) ∫ x arctg x dx
| ln x | ||
4) ∫ | dx | |
| x3 |
| 5x | ||
1. u = x i v' = 5x ∫5x dx = | + c | |
| ln 5 |
| 1 | ||
4. u = ln x i v' = | ||
| x3 |
| 5x | 5x | 5x | 5x | |||||
... = x | − ∫ | dx = x | − | + C | ||||
| ln 5 | ln 5 | ln 5 | ln 25 |
| 2 | 1 | |||
... = | x3/2ln x + | ∫ x−3/2 dx = ... | ||
| 3 | 2 |
| x2 | 1 | x2 | ||||
...= | arctg x− | ∫ | dx= | |||
| 2 | 2 | 1+x2 |
| x2 | 1 | 1 | 1 | |||||
= | arctg x− | ∫dx + | ∫ | dx | ||||
| 2 | 2 | 2 | 1+x2 |
| 5x | 5x | |||
a skad wiadomo np. w 1) ze ∫ | dx = | ? | ||
| ln5 | ln 25 |
| 5x | 5x | |||
powinno być | albo żeby nie było niedomówień | |||
| ln25 | ln5 * ln5 |
no ale z czego to bierzesz..? z jakiegos wzoru?
| ax | ||
więc ∫ax dx = | ||
| ln a |
| 2 | 2 | 1 | ||||
= | x3/2 ln x − | ∫ | x3/2 ? | |||
| 3 | 3 | x |
| ln x | ln x | 1 | 1 | |||||
∫ | dx = − | + ∫ | * | dx = | ||||
| x3 | 2x2 | x | 2x2 |
| ln x | 1 | 1 | ln x | 1 | −1 | |||||||
= − | + | ∫ | dx = − | + | * | + c = | ||||||
| 2x2 | 2 | x3 | 2x2 | 2 | 2x2 |
| 2ln x + 1 | ||
= − | + c | |
| 4x2 |
| 1 | ||
− | (ln x2 + 1 ) + C
| |
| 4x2 |