
2(cos4x−sin4x)>1
| 1 | ||
(cos2x − sin2x)(cos2x + sin2x) > | (cos2x − sin2x = cos2x, to drugie to 1 tryg.) | |
| 2 |
| 1 | ||
cos2x > | ||
| 2 |
| 1 | ||
Rozwiązuje równanie: cos2x = | ||
| 2 |
| π | π | |||
2x = | + 2kπ lub 2x = − | + 2kπ | ||
| 3 | 3 |
| π | π | |||
x = | + kπ lub x = − | + kπ | ||
| 6 | 6 |
| π | π | |||
x ∊ (− | + kπ, | + kπ) k ∊ C | ||
| 6 | 6 |