matematykaszkolna.pl
Ciągi martina: Dany jest trójkąt którego długości boków tworzą ciąg arytmetyczny, a jednym z kątów jest 120*. Wykaż, że obwód tego trójkąta jest równy (15/2)r gdzie r jest różnicą ciągu arytmetycznego.
8 lut 20:04
martina: bok a − a, b − a+r, c − a+2r obwód: 152r z twierdzenia cosinusów: po podstawieniu (a+2r)2=a2+(a+r)2−2a*a+r*cos 120 dochodze do tego momentu, przekasztalcam dalej, ale jak ten cosinus [rzedstawic?
8 lut 20:18
martina: pomoze ktos? emotka
8 lut 20:28
martina: wychodzi mi 2ar+3r2−a2+2a2r*cos 120 − co dalej?
8 lut 20:49