| nn | ||
∑ = | ||
| 2n n! |
| nn | ||
an = | ||
| 2nn! |
| an+1 | ||
limn→∞ | ||
| an |
| (n+1)n+1 | 2nn! | |||
= limn→∞ | * | |||
| 2n+1(n+1)! | nn |
| (n+1)n+1 | 1 | |||
= limn→∞ | * | |||
| 2(n+1) | nn |
| (n+1)n | ||
= limn→∞ | ||
| 2nn |
| 1 | n+1 | |||
= limn→∞ | *( | )n | ||
| 2 | n |
| 1 | 1 | |||
= limn→∞ | *(1+ | )n | ||
| 2 | n |
| e | ||
= | > 1 | |
| 2 |
dzięki wielkie
zaraz to przeanalizuje bo muszę się tego nauczyć na egzamin