| √2 | ||
Krawędź boczna tworzy z postawą kąt, którego cosinus wynosi | . Oblicz objętość i pole | |
| 4 |
cosα=U{p2}}{4}
4a+4b=24 //:4
a+b=6⇒b=6−a
| a√2 | ||
x= | ||
| 2 |
| x | ||
cosα= | ||
| b |
| ⎧ | Pp=?=a2 + 2aH | |
| ⎜ | H2=h2−(a2)2 | |
| ⎨ | 4a+4h=24 | |
| ⎩ | √2a2h=√24 |
| 1 | √2 | ||
a√2= | *b | ||
| 2 | 2 |
| 1 | √2 | √2 | |||
a√2= | *(6−a) / : | ||||
| 2 | 2 | 2 |
| 1 | √2 | ||
a√2: | = 6−a | ||
| 2 | 2 |
| 1 | 2 | ||
a√2* | =6−a | ||
| 2 | √2 |
| 1 | √2 | √2 | |||
a | * | = 6−a − pozbywam się pierwiastka z ułamka | |||
| 2 | √2 | √2 |
| 1 | 2√2 | ||
a | = 6−a / *2 | ||
| 2 | 2 |
| 2√2 | ||
a | = 12−2a / +2a | |
| 2 |
| 2√2 | 2√2 | |||
a | +2a= 12 / | |||
| 2 | 2 |
| 2√2 | ||
a+2a= 12: | ||
| 2 |
| 2 | ||
3a= 12* | ||
| 2√2 |
| 24 | √2 | |||
3a= | * | − pozbywam się pierwiastka z ułamka | ||
| 2√2 | √2 |
| 24√2 | ||
3a= | ||
| 4 |
| 1 | 2 | √2 | |||
a | * | =6−a | |||
| 2 | √2 | √2 |
| a√2 | 2√2*√2 | 4 | ||||
Policzyłem też x= | = | = | =2 | |||
| 2 | 2 | 2 |
| 1 | ||
y= | a | |
| 2 |
| 1 | ||
y= | *2√2=√2 | |
| 2 |
| √2 | ||
Dominik, popraw, bo cosα= | ||
| 4 |
| 1 | ||
P= | *Pp*H | |
| 3 |
| 1 | ||
P= | *4*√14 | |
| 3 |
| 4√14 | ||
P= | ||
| 3 |
| 1 | ||
Pb=4*( | *2*√15)=4√15 | |
| 2 |