| sin2x+5sin3x | ||
obliczyc granice lim x−>0 | ||
| 4x |
| sinx | ||
1. | = 1 | |
| x |
| tgx | ||
2. | = 1 | |
| x |
| arcsinx | ||
3. | = 1 | |
| x |
| arctgx | ||
4. | = 1 | |
| x |
| ex−1 | ||
5. | = 1 | |
| x |
| ax−1 | ||
6. | = lna | |
| x |
| ln(1+x) | ||
7. | = 1 | |
| x |
| loga(1+x) | ||
8. | = logae | |
| x |
| sinax | ||
lim x−>0 | =1 | |
| ax |
idę spać:
| sin2x+5sin3x | sin2x | 5sin3x | ||||
limx→0 | = limx→0 | + | = | |||
| 4x | 4x | 4x |
| 1 | sin2x | 3*5 | sin3x | 1 | 15 | |||||||
= limx→0 | * | + | * | = | *1 + | * 1 = | ||||||
| 2 | 2x | 4 | 3x | 2 | 4 |
| 2+15 | 1 | |||
= | = U{17}{4] = 4 | = 4,25 − szukana granica . ... ![]() | ||
| 4 | 4 |