| 5 | ||
x = y + | ||
| 6 |
| 5 | 5 | 5 | ||||
2( x + | )3 − 5( x + | )2 − 2( x + | ) + 1 = 0 | |||
| 6 | 6 | 6 |
| 37 | 161 | |||
2y3 − | y − | = 0 | ||
| 6 | 54 |
| 37 | 161 | |||
y3 − | y − | = 0 | ||
| 12 | 108 |
| 161 | ||
u3 + v3 = | ||
| 108 |
| 50653 | ||
u3*v3 = | i zauważamy że są to wzory Viet'a dla trójmianu kwadratowego o | |
| 46656 |
| 161 | 50653 | |||
z2 − | z + | = 0 | ||
| 108 | 46656 |
| 25921 | 50653 | 25921 | 50653 | 24732 | ||||||
Δ = | − 4* | = | − | = − | ||||||
| 11664 | 46656 | 11664 | 11664 | 11664 |
| 6√687 | ||
√Δ = √−2473211664 = i | ||
| 108 |
| 161 ± 6√687 | |||||||||||||||
z = | = | |||||||||||||||
| 2 | 216 |
| 1 | ||
y = 3√u1 + 3√u2 = | (3√161 + 6√687 + 3√161 − 6√687) | |
| 6 |
| 5 | 1 | 5 | ||||
x1 = y + | = | (3√161 + 6√687 + 3√161 − 6√687) + | ||||
| 6 | 6 | 6 |
| 1 | ||
y2 = | (3√161 + 6√687*e2iπ/3 + p3{161 − 6√687*e4iπ/3) | |
| 6 |
| 1 | 5 | |||
x2 = | (3√161 + 6√687*e2iπ/3 + p3{161 − 6√687*e4iπ/3) + | |||
| 6 | 6 |
| 1 | ||
y3 = | (3√161 + 6√687*e4iπ/3 + p3{161 − 6√687*e2iπ/3) | |
| 6 |
| 1 | 5 | |||
x3 = | (3√161 + 6√687*e4iπ/3 + p3{161 − 6√687*e2iπ/3) + | |||
| 6 | 6 |
| 1 | 5 | 1 | ||||
x = | (3√161 + 6√687 + 3√161 − 6√687) + | v x = | (3√161 + | |||
| 6 | 6 | 6 |
| 5 | 1 | |||
6√687*e2iπ/3 + p3{161 − 6√687*e4iπ/3) + | v x = | (3√161 + | ||
| 6 | 6 |
| 5 | ||
6√687*e4iπ/3 + p3{161 − 6√687*e2iπ/3) + | ||
| 6 |
To taki miły początek dnia
Może kolega źle przepisał


!
Fuck. Wszystkie pierwiastki do dupy.
Podopisuj sobie przy √687 wszędzie i