Na przeciwprostokatnej AB trójkąta ABC o katach ostrych α i β zbudowano kwadrat ADEB. Stosunek
pola kwadratu do pola trójkata wynosi 5:1
tgα + tgβ = tgα + ctg α
| c2 | 5 | ||
= | |||
| ab | 2 |
| (a + b)2−2ab | 5 | ||
= | |||
| ab | 2 |
| a2 +b2 | |
= 2,5 + 2 | |
| ab |
| c2 | 5 | ||
= | |||
| ab | 2 |
| a | b | 2 | |||
* | = | ||||
| c | c | 5 |
| 2 | ||
cosα*sinα= | ||
| 5 |
| sin2α | cos2α | |||
tg2α= | , a tg2β=ctg2α= | |||
| cos2α | sin2α |
| sin2α | cos2α | |||
tg2α+tg2β= | + | = | ||
| cos2α | sin2α |
| sin4α+cos4α | (sin2α+cos2α)2−2sin2αcos2α | ||
= | = | ||
| sin2αcos2α | sin2αcos2α |
| 1 | |
−2. | |
| sin2αcos2α |
| P □ | 5 | |||
... otóż , sprawa jest prostsza niż wygląda , bo z warunków zadania | = | , | ||
| PΔ | 1 |
| b2 | a2 | b4+a4 | ||||
zatem tg2α+tg2β = | + | = | = | |||
| a2 | b2 | a2b2 |
| (a2+b2)2−2(ab)2 | a2+b2 | P□ | ||||
= | = ( | )2 − 2 = ( | )2 − 2 = | |||
| (ab)2 | ab | 2PΔ |
| 5 | 25 | 8 | 7 | |||||
= ( | )2 − 2 = | − | = | . ... i to wszystko ... ![]() | ||||
| 2 * 1 | 4 | 4 | 4 |