| 1 | 1 | |||
sin3(x)*cos5(x) = (sin(x)*cos(x))3*cos2(x) = ( | sin(2x))3* | (1 + cos(2x)) = | ||
| 2 | 2 |
| 1 | |
sin2(2x)*(sin(2x) + sin(2x)*cos(2x)) = | |
| 16 |
| 1 | 1 | 1 | |||
* | (1 − cos(4x))(sin(2x) + | sin(4x)) = | |||
| 16 | 2 | 2 |
| 1 | 1 | 1 | |||
(sin(2x) + | sin(4x) − cos(4x) sin(2x) − | cos(4x)*sin(4x)) = | |||
| 32 | 2 | 2 |
| 1 | ||
ale cos(4x)*sin(2x) = | (sin(6x) − sin(2x) | |
| 2 |
| 1 | ||
cos(4x)*sin(4x) = | sin(8x) więc | |
| 2 |
| 3 | 1 | 1 | 1 | |||||
sin3(x)*cos5(x) = | sin(2x) + | sin(4x) − | sin(6x) − | sin(8x) | ||||
| 64 | 64 | 64 | 128 |
| sin20o*sin40o*sin60o*sin80o | ||
P = | ||
| cos20o*cos40o*cos60o*cos80o |
| 1 | ||
Wykażemy najpierw,że cos20o*cos40o*cos60o*cos80o = | ||
| 16 |
| 3 | ||
a następnie,że sin20o*sin40o*sin60o*sin80o = | ||
| 16 |
| sin160o | 1 | |||
Wobec czego B = | = | |||
| 8*sin20o | 8 |
| 1 | 1 | 1 | ||||
Dalej B*cos60o = | * | = | ||||
| 8 | 2 | 16 |
| 1 | ||
sin20o*sin40o = | *(cos20o − cos60o) | |
| 2 |
| 1 | √3 | |||
sin20o*sin40o*sin60o*sin80o = | (cos20o − cos60o)* | *sin80o = | ||
| 2 | 2 |
| √3 | 1 | ||
(cos20osin80o − | sin80o) = | ||
| 4 | 2 |
| √3 | 1 | 1 | |||
[ | (sin100o + sin6oo) − | sin80o] = | |||
| 4 | 2 | 2 |
| √3 | √3 | √3 | 3 | ||||
*sin60o = | * | = | |||||
| 8 | 8 | 2 | 16 |
| 3 | 1 | |||
Zatem P = | / | = 3 | ||
| 16 | 16 |
no to ja jeszcze raz b) tg20 tg40 tg60 tg80 =
| (2sin20 sin40) sin60 sin 80 | ||
= | = | |
| (2cos20 cos40) cos60 cos80 |
| (cos20−cos60) sin80 | ||
= | = | |
| (cos60+cos20) cos80 |
| 2cos20 sin80−2 *0,5 sin80 | ||
= | = | |
| 2*0,5 cos80+2cos20 cos80 |
| (sin100+sin60) − sin(180−100) | ||
= | = | |
| cos(180−100)+(cos100+cos60) |
| sin100 +sin60− sin100 | sin60 | |||
= | = | = tg60 =√3 ... ![]() | ||
| −cos100 + cos100 +cos60 | cos60 |
| sin60 | ||
W drugim rzędzie w ułamku nie mogę znaleźć | ||
| cos60 |