| x2 | ||
∫ | * dx | |
| x2+2x+5 |
| x2 | x2+2x+5 | 2x+5 | ||||
∫ | dx= ∫[ | − | ] dx = | |||
| x2+2x+5 | x2+2x+5 | x2+2x+5 |
| 2x+5 | 2x+2 | 3 | ||||
= ∫[1 − | ] dx = x − ∫ [ | + | ] dx = | |||
| x2+2x+5 | x2+2x+5 | x2+2x+5 |
| 1 | 1 | |||
= x − ln |t| + 3∫ | dx = x − ln |x2+2x+5| − 3∫ | dx = | ||
| x2+2x+5 | (x+1)2+4 |
| 1 | |||||||||||
= x − ln (x2+2x+5) − 3∫ | = | ||||||||||
|
| x+1 | dx | |||
// w ostatniej całce robię podstawienie 's = | ; ds = | ' // | ||
| 2 | 2 |
| 3 | 2 | 3 | ||||
= x − ln (x2+2x+5) − | ∫ | = x − ln(x2+2x+5) − | arc tg s + c = | |||
| 4 | s2+1 | 2 |
| 3 | ||
= x − ln(x2+2x+5) − | arc tg (x+12) + c ; c∊R | |
| 2 |
| 2x+2 | (2x+2) dx | dt | ||||
więc ∫ | dx = ∫ | = ∫ | = ln |t| = ln |x2+2x+5| | |||
| x2+2x+5 | x2+2x+5 | t |